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Abstract
Some comet- and Hill-type families of nearly circular symmetric periodic orbits of the elliptic restricted three-body problem
in the inertial frame are numerically explored by Broyden’s method with a line search. Some basic knowledge is introduced
for self-consistency. Set j/k as the period ratio between the inner and the outer orbits. The values of j/k are mainly 1/j

with 2 ≤ j ≤ 10 and j = 15,20,98,100,102. Many sets of the initial values of these periodic orbits are given when the
orbital eccentricity ep of the primaries equals 0.05. When the mass ratio μ = 0.5, both spatial and planar doubly-symmetric
periodic orbits are numerically investigated. The spacial orbits are almost perpendicular to the orbital plane of the primaries.
Generally, these orbits are linearly stable when the j/k is small enough, and there exist linearly stable orbits when j/k is
not small. If μ �= 0.5, there is only one symmetry for the high-inclination periodic orbits, and the accuracy of the periodic
orbits is determined after one period. Some diagrams between the stability index and ep or μ are supplied. For μ = 0.5,
we set j/k = 1/2,1/4,1/6,1/8 and ep ∈ [0,0.95]. For ep = 0.05 and 0.0489, we fix j/k = 1/8 and set μ ∈ [0,0.5]. Some
Hill-type high-inclination periodic orbits are numerically studied. When the mass of the central primary is very small, the
elliptic Hill lunar model is suggested, and some numerical examples are given.

Keywords Periodic orbits · Restricted three-body problem · Spatial resonance · Numerical continuation

1 Introduction

Periodic solutions play an important role in the study of
the nonlinear dynamical phenomena in celestial mechan-
ics. The closed trajectories in the phase space are also
called periodic orbits. Infinitely many periodic orbits exist
in the Kepler problem in the inertial frame or in the synodic
frame, and they can be continued along a parameter accord-
ing to Poincaré’s continuation method under some assump-
tions. These periodic orbits usually form into one-parameter
families, and the existence, stability, and bifurcations can
be studied analytically and numerically (Szebehely 1967;
Hénon 1997; Meyer et al. 2009).

In the restricted three-body problem (RTBP), two pri-
maries move along their respective circular (CRTBP) or el-
liptic (ERTBP) orbits around their center of masses with-
out any perturbations of the infinitesimal body, and the in-
finitesimal body as the research object is subjected to the
gravitation of both primaries. The ERTBP model is very
useful in space mission designs, as the orbits of the pri-
maries are usually eccentric; for example, the eccentricity
is about 0.205632 for Mercury, about 0.0934 for Mars, and
about 0.0549 for the Moon. The ERTBP model is also a first-
order model for describing the motion of an extrasolar planet
around a binary system, see, e.g., Broucke (2001), Haghigh-
ipour et al. (2010).

Various kinds of periodic orbits of the RTBP in the ro-
tating frame, including resonant orbits, quasi-collision or-
bits, and orbits around the librations, are being studied by
many researchers. Unlike the conserved Hamiltonian system
in which the energy can be served as a parameter, and one-
parameter families exist according to the Cylinder theorem
(Meyer et al. 2009; Galan-Vioque et al. 2014), the Hamilto-
nian of the ERTBP is periodic and not conserved. So, an
external parameter is needed to obtain the one-parameter
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families, and the parameter is usually the orbital eccentric-
ity or the mass ratio of the primaries. In Sarris (1989), two
groups of three-dimensional symmetric periodic orbits of
the ERTBP are studied with the mass ratio and the eccen-
tricity as the parameters. In Ollé and Pacha (1999), the pe-
riodic orbits of the planar isosceles RTBP, the Sitnikov and
the MacMillan problems are numerically continued, and the
stability of the families is studied. In Kotoulas and Voy-
atzis (2005), some exterior mean motion resonant periodic
orbits with high inclinations are numerically studied using
the Sun-Neptune ERTBP model. A review on the resonant
periodic orbits can be found in Pan and Hou (2022). In Peng
and Xu (2015), two groups of multi-revolution elliptic halo
(ME-halo) orbits of the ERTBP are systematically calcu-
lated by the optimization method, and their linear stability is
studied. In the Sun-Mercury ERTBP, Peng et al. (2017) also
studied the ME-halo orbits around the Euler libration points
near Mercury by the continuation of the resonant halo orbits.
Sheth and Thomas (2022) applied the Lindstedt-Poincaré
method to give the approximate solutions of the planar Lya-
punov and three-dimensional halo orbits in the linear system
of the ERTBP, computed the halo orbits in the Sun-Mars
ERTBP by the differential correction method, and studied
the effect of the solar radiation pressure on the bifurcations.
The elliptic Hill problem model is more accurate than the
circular Hill model for describing the motion of a satellite
near a planet. A recent progress on the periodic orbits with
stability regions in the elliptic Hill problem can be found in
Voyatzis et al. (2012). For the study of the quasi-collision
orbits of the RTBP, some references are Gómez and Ollé
(1986), Llibre and Piñol (1990), Gomez and Olle (1991),
Bolotin (2015), Zhao (2021).

Orbital elements are inevitably used to understand per-
turbed Keplerian orbits. The elliptic elements have the ad-
vantage of distinguishing the slow and fast variables. In
Hamiltonian mechanics, canonical elements expressed by
the orbital elements are usually used. Fast variables in the
perturbation terms cause the short-period effects, which can
be eliminated by the averaging method. As the ERTBP owns
a time-reversing symmetry, some symmetric periodic orbits
are proved to exist. Cors et al. (2001) showed the existence
of a class of comet-type symmetric periodic orbits in the
spatial ERTBP with the masses of the primaries equal. The
restriction on the mass ratio of the primaries is removed by
applying the averaging method and a generalized version
of Arenstorf’s theorem (Cors et al. 2005). These orbits are
nearly circular, almost perpendicular to the reference plane,
and can be described as of high inclination.

Note that the averaging method is used to simplify the
perturbed terms with short-period effects. Palacián et al.
(2006) gave six sets of the approximate initial values for
searching the comet-type periodic orbits by calculating the
equilibria of the averaged first-order system. Six equilibria

correspond to six families of periodic orbits. Two families
are planar, and the other four families are of high inclina-
tion. The existence of the Hill-type nearly circular periodic
orbits with large inclinations is proved by Xu and Fu (2009).
As there is a lack of numerical study on these comet- and
Hill-type orbits with high inclinations, the aim of this pa-
per is to calculate some orbits and study their linear stability
numerically.

In the computing age, periodic orbits are continued near
the known ones along a parameter or searched by the grid
method. The theory of continuation is based on the im-
plicit function theorem or the fixed point theorem, and the
idea dates from the first work of H. Poincaré (1884) on
the three-body problem (Chenciner 2015). The initial val-
ues of a periodic orbit can be numerically determined by
the multiple shooting method (Farantos 1998). The period-
icity conditions can be considered the nonlinear simultane-
ous equations, so Broyden’s method can be applied (Broy-
den 1965). In Xu (2022), some continuation algorithms are
reviewed, and a scheme is proposed for the continuation
of both asymmetric and symmetric periodic solutions. The
scheme combines the periodicity conditions and Broyden’s
method with a line search (Press et al. 1992). An applica-
tion of this scheme can be found in Xu (2023) for the nu-
merical study of the doubly symmetric periodic orbits of the
CRTBP. If one wants to find more periodic orbits in a given
set of initial values, the improved grid method using parallel
computing can be applied (see, e.g., Tsirogiannis et al. 2009;
Koh et al. 2021 and references therein).

Based on the preliminary work by Xu (2022, 2023), we
consider the numerical continuation of some comet- and
Hill-type three-dimensional nearly circular periodic orbits
in the ERTBP and also study their linear stability. The paper
is organized as follows. Section 2 introduces the Hamilto-
nian dynamical systems, the time-reversing symmetries, ini-
tial values of the approximate system, and how to calculate
the linear stability of the periodic orbits. In Sect. 3, some nu-
merical results are discussed. The last section summarizes
the conclusions.

2 The models in the inertial frame

2.1 The Hamiltonian systems

In the spatial ERTBP, the infinitesimal body is subjected
to the gravitational attraction of the primaries P1 and P2.
Choose the unit system such that the semi-major axis of the
relative elliptic orbit, the total mass of the primaries, and
the gravitational constant are all equal to 1. In this unit sys-
tem, μ ∈ (0,1) and 1 − μ are the masses of P2 and P1, re-
spectively. It is easy to verify that the orbital period of the
primary system is 2π . The center of masses is set as the ori-
gin of the inertial right-handed Cartesian coordinate frame
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O −u1u2u3, and the line of the semi-major axis is set as the
u1-axis. The motion plane of the primaries is set as the refer-
ence plane, and the axis u3 is perpendicular to the reference
plane. In this frame, the primaries rotate anticlockwise from
the direction of the positive u3-axis.

Let the upper T represent transposition. The position of
the infinitesimal body is denoted as q = (q1, q2, q3)

T ∈ R
3.

The vector from P2 to P1 is denoted as d = (d1, d2,0)T ∈
R

3. The position of P2 is −(1 − μ)d , and the position of
P1 is μd . Suppose that there are no singularities, we have
R1 = ‖q −μd‖ > 0 and R2 = ‖q +(1−μ)d‖ > 0, where ‖·
‖ is the Euclidean distance norm. The differential equation
system is

q̈ = − (1 − μ)(q − μd)

R3
1

− μ(q + (1 − μ)d)

R3
2

. (1)

The vector d is a solution of the planar Kepler problem
d̈ = −d · ‖d‖−3. For the relative orbit of the primaries,
let ep denote the eccentricity, Ep(t) denote the eccentric
anomaly, fp(t) denote the true anomaly, and Mp(t) = t de-
note the mean anomaly. Ep(t) satisfies the Kepler equation
Ep − ep sinEp = Mp(t), and d can be expressed as

d = d(cosfp, sinfp,0)T

= (cosEp − ep,

√
1 − e2

p sinEp,0)T,

where d = ‖d‖ = 1 − ep cosEp > 0. Denote the conjugate
momentum as p = q̇ , and the Hamiltonian can be expressed
as

HO = 1

2
‖p‖2 − 1 − μ

R1
− μ

R2
. (2)

For the comet-type orbits, the infinitesimal body is far
away from both primaries. Denote R = ‖q‖ � 1 and define
cos θ as

cos θ = R−1q · d/d = (q1 cosfp + q2 sinfp)/R. (3)

The two potential function terms in (2) can be expanded into
Legendre polynomial series:

1 − μ

R1
+ μ

R2

= 1

R

∞∑
l=0

Pl (cos θ)

[
(1 − μ)

(−μ)l

Rl
+ μ

(1 − μ)l

Rl

]
,

where P0(cos θ) = 1, P1(cos θ) = cos θ , P2(cos θ) =
3
2 cos2 θ − 1

2 and

Pl (− cos θ) = (−1)lP(cos θ),

Pl+1(cos θ) = 2l + 1

l + 1
cos θPl (cos θ) − l

l + 1
Pl−1(cos θ),

l ∈ N.

Neglecting the terms with l ≥ 1, the approximate system of
the full Hamiltonian system (2) for the comet-type orbits is

HO
0 = 1

2
‖p‖2 − 1

‖q‖ . (4)

To study the Hill-type motion near one primary, we move
the origin to P2. Let q = x − (1 − μ)d , then the system (1)
becomes

ẍ − (1 − μ)d̈ = − μx

‖x‖3 − (1 − μ)(x − d)

‖x − d‖3 ,

which is equivalent to

ẍ = ∂

∂x

(
μ

‖x‖ + 1 − μ

‖x − d‖ − (1 − μ)
d · x
d3

)
. (5)

The corresponding Hamiltonian can be expressed as

HP2 = 1

2
‖y‖2 − μ

‖x‖ − 1 − μ

‖x − d‖ + (1 − μ)x · d
d3 , (6)

with the conjugate momentum y = ẋ.

2.2 Canonical elements

The approximate system (4) and the system of the primaries
constitute a double two-body problem. To understand the
theoretically predicted periodic orbits of the full system, we
introduce the orbital elements, which are semi-major axis a,
eccentricity e, inclination i, longitude of the ascending node
�, argument of the pericenter ω, and the mean-anomaly
M(t) = nt . The mean motion n represents the average an-
gular velocity of the orbit of the infinitesimal body. As i

is not defined for planar orbits, and ω is not defined for
circular orbits, some other forms of elements are used in-
stead. The Poincaré-Delaunay elements (Q1 = � + g, Q2 =√

L − G sin(−g), Q3 = h, P1 = L, P2 = √
L − G cos(−g),

P3 = H ) are effective for the spatial circular orbits with high
inclinations, where the Delaunay elements are �(t) = M(t),
g = ω, h = �, L = √

a, G = L
√

1 − e2, H = G cos i. Thus,
the approximate system (4) can be expressed by the canon-
ical elements as HO

0 = − 1
2a

= − 1
2L2 . These canonical ele-

ments are useful for theoretical analysis, although they do
not seem as convenient as the Cartesian coordinates in our
numerical work.

2.3 The perturbation

The difference between the full system (2) and the approx-
imate system (4) is the perturbation for the comet-type mo-
tions. With the aim of estimating the order of the magni-
tude of the perturbation, a small parameter ε is introduced
by the symplectic scaling method as q = ε−2q̃ , p = εp̃. The
size of ε−2 represents how far the infinitesimal body is away
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from the center of masses. This is a symplectic transforma-
tion with multiplier ε. The scaled Hamiltonian H̃O = εHO

can be written in series as

H̃O =ε3
(

1

2
‖p̃‖2 − 1

‖q̃‖
)

− ε7 μ(1 − μ)

‖q̃‖3
P2(cos θ)

− ε9 (1 − 2μ)μ(1 − μ)

‖q̃‖4 P3(cos θ) −O(ε11). (7)

So, the perturbation of the approximate system is of order
ε4 if μ(1 − μ) is not small, and the second term in the per-
turbation is zero if μ = 0.5.

To estimate the perturbation of the orbit near the primary
P2, let the size of ε represent how close to P2 the infinites-
imal body is. Let x = ε2μ1/3x̃, y = ε−1μ1/3ỹ, which is a
symplectic change of variables with multiplier ε−1μ−2/3.
The scaled Hamiltonian H̃P2 can be written as

H̃P2 = ε−3
(

1

2
‖ỹ‖2 − 1

‖x̃‖
)

− ε−1 μ−2/3(1 − μ)

‖ε2μ1/3x̃ − d‖

+ εμ−1/3 (1 − μ)x̃ · d
d3

= ε−3
(

1

2
‖ỹ‖2 − 1

‖x̃‖
)

− ε3(1 − μ)
‖x̃‖2

d3
P2(cos θ)

+O(μ1/3ε5). (8)

So, the perturbation order of the approximate system in the
Hamiltonian system H̃P2 is of order ε6.

2.4 Symmetries

There exist symmetries in the ERTBP. The symmetry may
be about the u1-axis, the u1u3-plane, or the u1u2-plane
(Broucke 2001). Symmetries are exploited to provide the
periodicity conditions of the symmetric periodic orbits. The
first symmetry about the u1-axis corresponds to the time-
reversing symmetry R1, which is usually applied in the spa-
tial ERTBP. The second symmetry about the u1u3-plane is
mostly used for the planar periodic orbits in the ERTBP, and
the time-reversing symmetry is denoted as R2. The third
symmetry about the u1u2-plane is usually used in the ver-
tical motion problems and is out of our scope here.

R1 : (q1, q2, q3,p1,p2,p3,Ep(t), t)

→ (q1,−q2,−q3,−p1,p2,p3,−Ep(t),−t),

R2 : (q1, q2, q3,p1,p2,p3,Ep(t), t)

→ (q1,−q2, q3,−p1,p2,−p3,−Ep(t),−t).

The periodicity conditions for the nearly circular R1-
symmetric periodic orbits are based on the following well-
known proposition (Cors et al. 2005).

Proposition 1 Consider the general ERTBP as described
by the Hamiltonian system (2) or (6) as above. Let L1 =
{(q,p, t) : q2 = q3 = p1 = 0, t = 0 mod π} if a solution
starts from L1 and comes back to L1 after a time T/2 =
kπ > 0. Then (1) the solution is a periodic orbit with period
T = 2kπ ; (2) the Lagrangian set L1 is equivalent to L (1)

1 ,
in which sin i > 0 and

L (1)
1 = {(Q,P, t) : Q1 = 0 mod π, Q2 ≡ 0,

Q3 = 0 mod π, t = 0 mod π}.

Proof (1) Denote the solution of the Hamiltonian system (2)
or (6) as Z(t,Z0) = (q,p) with Z0 ∈ L1. Define the anti-
symplectic matrix 	1 = diag{1,−1,−1,−1,1,1}, then we
have 	1Z0 = Z0. According to the R1-symmetry, we have

	1Z(−t,Z0) = Z(t,Z0). (9)

Set t = kπ . As Z(kπ,Z0) ∈ L1, then 	1Z(kπ,Z0) =
Z(kπ,Z0). Combining with the equation (9), we have
	2

1Z(−kπ,Z0) = Z(−kπ,Z0) = Z(kπ,Z0). Thus, the so-
lution is periodic with period 2kπ .

(2) As q3 = r sin(f + ω) sin i and sin i > 0, we have f +
ω = 0 mod π in the set L1. As q2 = cos(f + ω) sin� +
cos i sin(f + ω) cos�, then � = 0 mod π in the set L1. As

q̇1 = − Ck

a(1 − e2)

× [
(sin(f + ω) cos� + cos i sin� cos(f + ω))

+ e(sinω cos� + cos i cosω sin�)
]
,

then e sinω = 0 in the set L1. According to the definition of
the Poincaré-Delaunay elements, L1 is equivalent to L (1)

1 .
�

In the ERTBP with μ = 1/2, there exist solutions sym-
metric with respect to the u2u3-plane (the fourth) or the u2-
axis (the fifth). Corresponding to the fourth symmetry, the
time-reversing symmetry R4 is

R4 : (q1, q2, q3,p1,p2,p3,Ep(t), t)

→ (−q1, q2, q3,p1,−p2,−p3,−Ep(t),−t).

The Lagrangian set L4 is defined as below

L4 = {(q,p, t) : q1 = p2 = p3 = 0, t = 0 mod π}.
It is easy to verify that this set is equivalent to

L (1)
4 = {(Q,P, t) : Q1 = π

2
mod π,

Q3 = 0 mod π,P2 ≡ 0, t = 0 mod π}.
As is shown in Cors et al. (2001), there exists a class of
R1R4-symmetric periodic orbits.
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Proposition 2 Let Z(t,Z0) = (q,p) be a solution of the
Hamiltonian system (2) with μ = 1/2. If a solution Z(t,Z0)

starts from L1 (or L4) at t = 0 and goes through L4 (or
L1) at time t = k1π with k1 ∈ N large, then the solution
Z(t,Z0) is periodic with the period 4k1π .

Proof The anti-symplectic matrix 	1 is defined in Propo-
sition 1. Define the other anti-symplectic matrix 	4 =
diag(−1,1,1,1,−1,−1)

	1	4 = −I6 = −diag(1,1,1,1,1,1), 	2
1 = 	2

4 = I6.

Suppose Z0 ∈ L at t = 0 and Z1 = Z(kπ,Z0) ∈ L3 at t =
k1π . We have

	1Z0 = Z0, 	4Z1 = Z1, 	1Z1 = 	4Z(−k1π,Z0).

Then

	2
1Z1 = 	1	4Z(−k1π,Z0) ⇐⇒ Z1 = −Z(−k1π,Z0).

Similarly, we have

Z(3k1π,Z0) = Z(2k1π,Z1) = −Z1 = Z(−k1π,Z0),

and the period is 4k1π . �

2.5 Initial values

For the comet-type orbits, the approximate system (4) be-
haves like the outer orbit system, while the system of the two
primaries is like the inner orbit system. The mean anomaly
of the outer orbit changes much slower than that of the in-
ner orbit. Let j and k be relatively prime integers. Suppose
the infinitesimal body revolves around the origin j circles,
and the primaries revolves around each other k circles. The
period of a periodic solution is 2kπ unit time. So, we have
|n|2kπ = 2jπ and |n| = j/k.

Note that j � k is for the comet-type motions, and j � k

for the Hill-type motions. The initial values for the nearly
circular R1-symmetric periodic orbits, which are almost
perpendicular to the orbital plane of the primaries, can be
written as

(q1, q2, q3,p1,p2,p3,Ep(0))

= (±a + δ1,0,0,0, δ2, na + δ3,Ep(0)), (10)

where Ep(0) = 0 or π , a = (k/j)2/3 and δj is in a neigh-
borhood of zero for j = 1,2,3. Theoretically, ε should be
small, however, for the convenience of computing, we would
like ε3 not to be too small. To make scaled semi-major
axis be 1, we set ε3 = j/k for the comet-type orbits with
n2a3 = 1 and set ε3 = k/j for the Hill-type orbits with
n2a3 = μ. Then the initial values for both the comet- and
Hill-type orbits have the same form as (10).

R1R4-symmetry exists in the ERTBP when μ = 0.5. For
the reason of this double symmetry, k should be even, and
only k1π = kπ/2 unit time is needed to determine the dou-
bly symmetric periodic orbits. If the initial values belong to
the set L1, then the periodicity conditions are

q1(k1π,q1,p2,p3) = 0, p2(k1π,q1,p2,p3) = 0,

p3(k1π,q1,p2,p3) = 0.
(11)

If the initial values belong to the set L4 as

(q1, q2, q3,p1,p2,p3,Ep(0))

= (0, δ2,±a + δ1, na + δ3,Ep(0)), (12)

then the periodicity conditions are

q2(k1π,q2, q3,p1) = 0, q3(k1π,q2, q3,p1) = 0,

p1(k1π,q2, q3,p1) = 0.
(13)

Consider the R1-symmetric Kepler circular-orbit solu-
tions in the approximate system (4) as the approximate
solutions of the periodicity conditions (11) or (13). The
initial values satisfy p2(0) = 0 if the solution starts from
L1. The set of initial values in L1 can be represented as
(q1,p3, cosEp(0)) with Ep(0) = 0 mod π , and there are
generally eight cases for the signs listed as (±,±,±). If
the initial values belong to the set L4, the solutions satisfy
q2(0) = 0, and the set of initial values can be represented as
(q3,p1, cosEp(0)). When μ = 0.5, the number of the cases
of the initial values is halved as the result of the symmetries,
and only q1 > 0 is considered.

2.6 Linear stability

Let U = U(q, t) be the time-dependent potential function
U = 1−μ

R1
+ μ

R2
, then the differential system (1) can be

rewritten as q̇ = p and ṗ = ∂U
∂q = ∇U . The linearized dif-

ferential equations of the system (1) can be written as

δq̇ = δp, δṗ = ∂

∂qT

(
∂U

∂q

)
· δq =

(
∇2U

)
δq, (14)

where δq, δp ∈ R
3 and ∇2U is denoted as the Hessian ma-

trix of U at q . Set δx, δy ∈ R
3, and the linearized differen-

tial system of the system (5) is

δẋ = δy,

δẏ = μ∇2
(

1

‖x‖
)

δx + (1 − μ)∇2
(

1

‖x − d‖
)

δx.
(15)

The linearized procedure can be proceeded by referring to
the calculation of the symmetric Hessian matrix below

∇2
(

1

‖x − d‖
)

= −∇
(

x − d

‖x − d‖3

)
=
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⎛
⎜⎜⎜⎝

3(x1−d1)
2−‖x−d‖2

‖x−d‖5
3(x1−d1)(x2−d2)

‖x−d‖5
3(x1−d1)x3

‖x−d‖5

3(x2−d2)(x1−d1)

‖x−d‖5
3(x2−d2)

2−‖x−d‖2

‖x−d‖5
3(x2−d2)x3

‖x−d‖5

3(x1−d1)x3
‖x−d‖5

3(x2−d2)x3
‖x−d‖5

3x2
3−‖x−d‖2

‖x−d‖5

⎞
⎟⎟⎟⎠ .

The linear stability can be determined by the characteris-
tic multipliers calculated from the integration of these lin-
earized differential equations with the identity matrix I6 as
the initial matrix solution. The linear stability of a doubly
symmetric periodic orbit can be known from the informa-
tion of only one-fourth period. The proposition about the
monodromy matrices of the symmetric periodic orbits can
be expressed as below.

Proposition 3 (See Xu 2023 for the proof ) Let Z(t,Z0) ∈
R

6×6 be the standard fundamental matrix solution of the
system (14). (1) If Z(t,Z0) starts from L1 and comes back
to L1 after time kπ (k ∈ N), then the monodromy matrix can
be calculated as

Z(2kπ,Z0) = Z(kπ,Z0)	1Z−1(kπ,Z0)	1.

(2) R1R4-symmetric periodic solutions exist when μ = 0.5
in the system (1). The monodromy matrix for such a doubly
symmetric 4k1π -period periodic solution with Z0 ∈ L1 can
be written as

Z(4k1π,Z0) = [N (2k1π,Z0)	1]2 ,

where k1 ∈N and

N (2k1π,Z0) = Z(k1π,Z0)	4Z−1(k1π,Z0).

If Z1 ∈ L4, the monodromy matrix Z(4k1π,Z1) satisfies

Z(4k1π,Z1) = [N (2k1π,Z1)	4]2 ,

N (2k1π,Z1) = Z(k1π,Z1)	1Z−1(k1π,Z1).

The eigenvalues of the monodromy matrix are called the
(characteristic) multipliers and are in reciprocal pairs. If all
the multipliers are not ±1 and are on the unit circle with all
the moduli equal to 1, then the corresponding periodic orbit
is said to be linearly stable. A numerical experiment shows
that some real multipliers can appear outside the unit circle,
and no phenomena about the complex instability appear. The
linear stability indicator ρ of a periodic orbit is denoted as
the sum of the moduli of the six characteristic multipliers.
There will be errors in the numerical calculations, so we take
10 significant digits for ρ to estimate the linear stability.

3 Numerical continuation

In this section, some numerical results about the comet- and
Hill-type nearly circular symmetric periodic orbits are pro-
vided. The initial values of the periodic orbits are continued

from those of the Kepler circular orbits, and the continued
orbits are very close to the unperturbed orbits.

The integrations of the Cartesian coordinate differential
equations (1) and (5) are executed by the variable step-size
Runge-Kutta 7-8 routine. To continue the Kepler periodic
orbits, we need to solve the periodicity conditions, which
are achieved by the numerical integration from the initial
values over the fixed time. Newton’s method has its short-
comings in solving the simultaneous nonlinear equations,
but Broyden’s method with a line search converges globally
and can overcome the shortcomings to a great degree (Broy-
den 1965). Although the corresponding routines in Press
et al. (1992) can try many times to avoid the degeneracy
of the Jacobian matrix, there are still some factors affecting
the results, for example, the complicated perturbations, the
inaccurate initial values, the errors brought by the integra-
tion, the inappropriate setting of the control parameters, and
so on. The accuracy of the continued initial values is rep-
resented as the infinity norm of the deviation vector in the
periodicity conditions of one period.

3.1 Comet-type

3.1.1 Equal-mass case

The Hamiltonian (2) with μ = 0.5 has five types of time-
reversing symmetry, which are about the u1-axis (R1), the
u1u3-plane (R2), the u1u2-plane, the u2u3-plane (R4), and
the u2-axis. Note that the first three types are valid for all
the mass ratios, and the last two types are only valid for
μ = 0.5. Consider the numerical continuation of the R1R4-
symmetric periodic orbits stated in Proposition 2. The cases
of the approximate initial values is 8 if μ = 0.5 and j/k

is fixed, and there are 16 cases for the initial values of the
continued orbits. According to the symmetries, the fami-
lies of the continued orbits are symmetric with respect to
the u1u2-plane. In Table 1, the initial values of some dou-
bly symmetric periodic orbits, which are almost perpendic-
ular to the reference plane, are calculated. Ten values of
j/k are 1/2,1/4,1/6,1/8,1/10, 1/98,1/100,1/102, and
3/8,3/10. The eccentricity ep is chosen to be 0.05. The re-
sults are in good precision up to 10−12. The numerical re-
sults show that the continued periodic orbits are almost ac-
cordingly symmetric if the approximate initial solutions are
symmetric. The doubly symmetric periodic orbits can start
from either the set L1 or the set L4, and the initial values to
be continued can be referred to (10)–(13) in Sect. 2.5.

The accurate initial values of the case “(1/102,+,+,−)”
can not be successfully found at first but later can be refined
according to the initial values of the case “(1/102,+,−,−)”
because of the symmetry R1. This special example reveals
the fact that retrograde orbits are generally more stable than
the prograde orbits. The stability index ρ also supports this
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Table 1 Continuation results for the doubly symmetric comet-type pe-
riodic orbits with μ = 0.5, ep = 0.05. Ten mean motions |n|j/k are
considered. The signs “±,±,±” represent the signs of initial parame-

ters q1,p3, cosEp . The accuracy is denoted as the infinity norm of the
deviation vector of the periodic orbit after integrating a period

j/k, q1,p3, cosEp q1 p2 p3 ρ

1/2,+,±,+ 1.6408106616065017 3.9486472368497637E-2 ±0.75000894569632204 12.29160706

1/2,+,±,− 1.6548532537981551 -8.2730199360359608E-2 ±0.76439150276818235 13.14353377

1/4,+,±,+ 2.5149127499795325 -1.1098202336745199E-3 ±0.63433012391436261 6.031736506

1/4,+,±,− 2.5331260778528937 -7.0753287981097836E-3 ±0.62851132825771361 6.149820948

1/6,+,±,+ 3.3017164963159429 -1.0592239113123513E-3 ±0.55206105150165152 6.000143326

1/6,+,±,− 3.3048689435187657 -2.0209508948591088E-3 ±0.55120133109681824 6.002095678

1/8,+,±,+ 4.0001649312745222 -5.183263762487362E-4 ±0.50102581944331770 6.000067086

1/8,+,±,− 4.0012170189086582 -9.327207960167349E-4 ±0.50078986896828870 6.000082987

3/8,+,±,+ 2.0387333481595920 -1.2249115391472193E-2 ±0.68773512110028778 6.236348792

3/8,+,±,− 1.8612261365955991 -3.2155891051545454E-2 ±0.74178298548701183 6.022658713

1/10,+,±,+ 4.6417627911543295 -2.898111919165371E-4 ±0.46486060044136912 6.000037085

1/10,+,±,− 4.6422788219070110 -5.138383815727713E-4 ±0.46476525731277796 6.000037167

3/10,+,±,+ 2.1932339232083935 -2.2449496528567660E-3 ±0.68481992354348842 6.013018795

3/10,+,±,− 2.2832352999532248 -6.1797092118348234E-3 ±0.65503917680311075 6.004385296

1/98,+,±,+ 21.256159310917599 -6.6947238777544310E-7 ±0.21691474756871523 6.000000085

1/98,+,±,− 21.256160292067928 -1.1592311093406933E-6 ±0.21691472837150805 6.000000085

1/100,+,±,+ 21.544382923711527 -6.3435652947157414E-7 ±0.21545848971781834 6.000000080

1/100,+,±,− 21.544383853326160 -1.0984137028383664E-6 ±0.21545847189277662 6.000000080

1/102,+,±,+ 21.830691300630864 -6.0172437560896545E-7 ±0.21404056960035289 6.000000076

1/102,+,+,− 21.830691300630587 -6.0172530592989976E-7 0.21404056960035311 6.000000076

1/102,+,−,− 21.830692182360249 -1.0418987513387589E-6 -0.21404055302503697 6.000000076

j/k, q3,p1, cosEp q2 q3 p1 ρ

1/2,+,±,+ ±8.1415598484332066E-2 1.5116210866748250 ±0.79542643068716523 13.14353689

1/2,+,±,− ∓0.15262102153333548 1.4885849649577847 ±0.79122085488058336 12.29160706

1/4,+,±,+ ∓9.3972457029645982E-3 2.5015227304858634 ±0.61855295536688726 6.031736506

1/4,+,±,− ±1.0439751255182444E-3 2.4873139000781608 ±0.62390005099140422 6.149820948

1/6,+,±,+ ∓4.4426232102857054E-4 3.2835176686439334 ±0.54548241845816170 6.002095678

1/6,+,±,− ∓9.5214847590999554E-4 3.2823296161893540 ±0.54592993580692606 6.000143326

1/8,+,±,+ ∓1.7181491030619797E-4 3.9846097404640073 ±0.49703305450132229 6.000067086

1/8,+,±,− ∓2.8017113105325853E-4 3.9841317652022674 ±0.49718225480716838 6.000082987

3/8,+,±,+ ±1.9738916833429394E-2 1.7894281106224443 ±0.73693807093704988 6.236348792

3/8,+,±,− ±5.7921564123867304E-3 1.9935950656593973 ±0.67522154849390625 6.022658713

1/10,+,±,+ ∓7.2759986171943558E-5 4.6282480606300416 ±0.46212312398756367 6.000037167

1/10,+,±,− ∓1.2090274887253335E-4 4.6280240829437922 ±0.46218486827595667 6.000037085

3/10,+,±,+ ∓1.2219471542000060E-2 2.2419347344503953 ±0.64391399536050842 6.004385296

3/10,+,−,− 1.7391573195070807E-2 2.1635836091208533 −0.67146379901960906 6.013018794

1/98,+,±,+ ∓1.5956665888980855E-8 21.253189872594007 ±0.21685412863617834 6.000000085

1/98,+,±,− ∓2.7019426742086156E-8 21.253189504148970 ±0.21685414154064059 6.000000085

1/100,+,±,+ ∓1.4801154750361152E-8 21.541453203408832 ±0.21539987822500106 6.000000080

1/100,+,±,− ∓2.5091008768336938E-8 21.541452854334821 ±0.21539989020792091 6.000000080

1/102,+,±,+ ∓1.3763602893106173E-8 21.827799996373994 ±0.21398386125536917 6.000000076

1/102,+,±,− ∓2.3332753592532629E-8 21.827799665297761 ±0.21398387239887426 6.000000076

fact if ρ is expressed by 16 significant digits. The results
show that such periodic orbits tend to be linearly stable as
j/k decreases. The closer to 6 is the stability index ρ, the

more stable the periodic orbit. To understand the graphics
of such periodic orbits, two groups of graphics are shown in
Fig. 1 and Fig. 2.
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Fig. 1 The comet-type doubly symmetric periodic orbit with μ = 0.5
and ep = 0.05 for the case “(1/2,+,+,+)” in Table 1

Fig. 2 The comet-type doubly symmetric periodic orbit with μ = 0.5
and ep = 0.05 for the case “(1/98,+,+,−)” in Table 1

If j/k and ep are changed, the above procedure can
be repeated. For the fixed case “(j/k,+,−,+)”, the one-
parameter families of periodic orbits can be continued along
the parameter ep from the same approximate initial so-
lution. To show the relation between ep and ρ, we offer
some graphics for j/k = 1/2,1/4,1/6,1/8 in Fig. 3. We
set 0 ≤ ep ≤ 0.95 with the step 0.05 and find that ρ grows
as ep increases when ep is small. When j/k ≤ 1/8, there is
an inflection point at which ρ gets the maximum.

We find that some planar symmetric periodic orbits of the
family l (comet-type direct motion) and m (comet-type ret-
rograde motion) exist in the ERTBP, and the families can be
continued along the eccentricity ep . The notations Ij/k

d (ep)

and Ij/k
r (ep) separately represent the families l and m. We

calculate some planar R1R2-symmetric periodic orbits. The
graphics of some orbits with j = 1, 2 ≤ k ≤ 5 and Ep = 0
are shown in Fig. 4. The approximate initial values satisfy
(q1,0,0,0,p2,0) with q1 > 0. From inside to outside of

Fig. 3 The diagrams for the relations between the eccentricity ep and
the linear stability index ρ with ep as the parameter. In the four subim-
ages, j/k = 1/2,1/4,1/6,1/8, respectively. Each family is of the case
“+,−,+”

the left subgraph, the orbits are of type I1/2
r (0.5), I1/3

d (0.5),

I1/4
r (0.5), I1/5

d (0.5), and I1/5
r (0.5). In the right subgraph, the

ep −ρ relations of some cases are shown. “kr” represents the

type I1/k
r , and “kd” represents the type I1/k

d . Generally speak-
ing, orbits of family m are more stable than orbits of family
l for the same semi-major axes. Periodic orbits of Id

1/3 and
Id

1/4 are linearly stable when ep = 0, but they become unsta-

ble quickly when ep > 0. Family I1/3
r is weak linearly stable

when 0.05 ≤ ep ≤ 0.2 as ρ(0.15) ≈ 6.0000015 and unstable

when ep > 0.55. The continued orbit for the case I1/2
d (0) is

very unstable as ρ ≈ 5465.0. Family I1/2
r is linearly stable

for ep ≤ 0.8. Family I1/6
d becomes unstable when ep = 0.4,

and the maximum value of ρ is 6.19 when ep = 0.9. Fam-

ily I1/6
r is always linearly stable. The ep − ρ curves of the

families Id
1/5 and Ir

1/5 are not drawn. Family Id
1/5 can only

be continued along ep from 0 to 0.1 and is linearly stable.
Family Ir

1/5 can be continued along ep from 0 to 0.75, and
the orbits are linearly stable except ep ∈ [0.2,0.65]. The rea-
son for the bifurcations from stability to instability when ep

grows, as well as the existence and stability of such periodic
orbits with the variation of μ, deserves consideration in the
future.

3.1.2 Case μ �= 0.5

There is only one useful time-reversing symmetry R1 for
the nonplanar symmetric periodic orbits in the Hamiltonian
(2) if μ �= 0.5. Consider the numerical study of such pe-
riodic orbits in the Sun–Jupiter ERTBP. Set μ = 0.99905
and ep = 0.05. As is stated in Proposition 1, there exist
nearly circular periodic orbits of high inclination for any
μ with k large enough. It is interesting to know whether



Continuation of some nearly circular periodic orbits in ERTBP Page 9 of 12    13 

Fig. 4 The graphics of some R1R2-symmetric periodic orbits with
μ = 0.5 and j = 1,2 ≤ k ≤ 6. “kd” and “kr” represent the type of
periodic orbits with n = 1/k and n = −1/k, respectively. The approx-
imate initial value of q1 is k2/3. The left subgraph contains 5 periodic

orbits, which are of type “2r”, “3d”, “4r”, “5d”, and “5r”. The right
subgraph contains 7 curves for the ep − ρ relations, and the types of
the families can be referred to the legend

Fig. 5 Two examples of the comet-type symmetric periodic orbits
with μ = 0.99905, ep = 0.05 in Table 2. The larger orbit is of
the case “(1/10,+,+,+)”, and the smaller orbit is of the case
“(1/8,−,−,+)”. The data are of 10 periods

such orbits still exist for k small and whether they are sta-
ble. To this end, we conduct numerical research and find
that such orbits can be calculated with the accuracy 10−5

when k ≥ 7. The numerical results show that it is possible
to accurately calculate such periodic orbits when k is large.
Such periodic orbits become closer to the u1u3-plane as k

increases. In Table 2, there are 8 sets of period ratios and
j/k = 1/7,1/8,1/9,1/10, 1/20, 1/98, 1/100, 1/102. For
each ratio j/k, 4 sets of initial values of the periodic orbits
are supplied. Two periodic orbits are shown in Fig. 5 as ex-
amples. One orbit is of the type “(1/8,−,−,+)”, and the
other orbit is of the type “(1/10,+,+,+)”.

The mass ratio μ can be used as one parameter to con-
tinue the periodic orbits. Let ep = 0.05,0.0489 be fixed suc-
cessively. The periodic orbits of the type “(1/8,+,−,+)”
are numerically continued from μ = 0.001. The program
fails at some values of μ, and these values are omitted. The
relation between μ and ρ is shown in Fig. 6. It is obvious
that the linear stability of these periodic orbits are affected

Fig. 6 The diagram of the relation between the stability index ρ of
the nearly circular periodic orbits of type (1/8,+,−,+) and the mass
ratio μ. One curve is for ep = 0.05, and the other is for ep = 0.0489

by mass ratio μ, eccentricity ep , the period ratio j/k, and
the direction of the motion.

3.2 Hill-type

Consider the numerical continuation of the Hill-type nearly
circular orbits close to the u1u3-plane. As far as we know,
there is rarely any numerical work on the Hill-type high-
inclination nearly circular periodic orbits in the ERTBP. It
is interesting to consider the ERTBP with the background
of the Sun–Jupiter and Uranus–Sun systems. Set 1 − μ1 =
9.5E-3 and μ2 = 4.36E-5, respectively. ep is taken as the
approximate value 0.05. The initial values can be set as
|q1| = a = μ1/3(k/j)2/3, |p3| = (μ/a)1/2 and | cosEp| = 1.
As the existence proof demands the perturbation to be suffi-
ciently small, the value j/k should be big correspondingly.
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Table 2 Continuation results for the comet-type symmetric periodic
orbits with 1 − μ = 0.00095, ep = 0.05 and j = 1, 7 ≤ k ≤ 10 and
k = 98,100,102. The initial values are of the type in (10). ρ is the lin-

ear stability index, and the accuracy is the infinity norm of the deviation
of the periodic orbit after one period

j/k, q1,p3, cosEp q1 p2 p3 ρ − 6, accuracy

1/7,+,−,+ 3.6592987489638045 -6.4122106664957639E-6 -0.52276292935825519 4.5E-5, 3.4E-6

1/7,+,−,− 3.6591852291889055 1.0076050086637359E-4 -0.52278090168470115 7.6E-11, 3.4E-5

1/7,−,−,+ -3.6595666847189361 -3.2300482393227901E-5 -0.52272807327828696 7.7E-8, 6.0E-7

1/7,−,−,− -3.6593683804109562 7.1231378413774948E-5 -0.52275293163232239 2.0E-5, 6.6E-8

1/8,+,−,+ 3.9999626164658486 5.4210230072135188E-6 -0.50000815457236969 -7.0E-13, 2.4E-5

1/8,+,−,− 4.0000277329652985 -1.0675289545006397E-5 -0.50000085931580929 4.5E-10, 8.7E-6

1/8,−,−,+ -4.0000202855245481 -2.0981961398261546E-5 -0.50000289781015694 4.7E-6, 3.4E-7

1/8,−,−,− -4.0001167463886214 1.3164858321973209E-5 -0.49998897137431436 3.8E-6, 1.3E-7

1/9,+,−,+ 4.3267629076041452 -4.2072242537383840E-6 -0.48075125353714027 1.3E-10, 1.3E-5

1/9,+,−,− 4.3266440426180015 3.8504442837501964E-7 -0.48076495402763586 7.8E-13, 1.8E-5

1/9,−,−,+ -4.3267305692889710 -1.2215042323670958E-6 -0.48075606420853845 9.2E-6, 1.3E-6

1/9,−,−,− -4.3288988459465712 1.6612736631431054E-5 -0.48051413042648866 1.8E-5, 1.7E-7

1/10,+,+,+ 4.6416235211720576 -1.8255832376417327E-6 0.46415797351004001 8.4E-11, 1.3E-5

1/10,+,+,− 4.6413456440981653 3.3455256764516010E-7 0.46418603155250421 1.3E-10, 1.2E-5

1/10,−,+,+ -4.6415781139089827 8.5046069498431707E-7 0.46416333821269673 3.0E-6, 1.5E-7

1/10,−,+,− -4.6416121804638824 3.6213273309066630E-6 0.46415926249244560 3.0E-6, 1.5E-7

1/20,+,−,+ 7.3680746717162817 -1.5143641768103586E-7 -0.36840340580681524 3.8E-11, 4.9E-6

1/20,+,−,− 7.3680741127370055 -2.6168791635074620E-7 -0.36840344122687169 3.9E-11, 5.0E-6

1/20,−,+,+ -7.3680684952906841 1.4396331223650695E-7 0.36840380525882260 7.9E-7, 3.0E-8

1/20,−,+,− -7.3682811593858473 7.1276108315551053E-7 0.36839313893333769 8.0E-7, 3.0E-8

1/98,+,+,+ 21.256126128123359 6.3714527689866642E-11 0.21689923786405826 -3.0E-12, 1.2E-7

1/98,+,+,− 21.256120725000279 -1.8453113367049422E-9 0.21689929324465840 -5.6E-13, 6.0E-7

1/98,−,+,+ -21.256123958837428 2.7296604705071015E-9 0.21689926198175488 3.4E-8, 7.7E-10

1/98,−,+,− -21.254842683643524 4.9618229495974987E-9 0.21691233656799166 2.4E-7, 8.0E-10

1/100,+,+,+ 21.544346217477752 2.6390049362847486E-8 0.21544353364798838 1.7E-12, 6.1E-7

1/100,−,+,+ 21.544360207168584 -2.3628401219165148E-9 0.21544339372326538 3.0E-12, 5.9E-7

1/100,+,+,− -21.544351198669208 1.9133191503697579E-9 0.21544348546301900 3.2E-8, 7.3E-10

1/100,−,+,− -21.544349146414532 2.2950806672727712E-9 0.21544350593492809 3.2E-8, 7.3E-10

1/102,+,+,+ 21.830657231715431 -2.8296610120786632E-9 0.21402607808699303 3.3E-12, 5.7E-7

1/102,+,−,+ 21.830658742953297 -7.1405922187972318E-9 -0.21402606325850704 1.1E-12, 5.8E-7

1/102,+,+,− -21.830653628529703 2.3656707874384857E-9 0.21402611520715312 -7.3E-13, 2.2E-7

1/102,−,+,− -21.830653085533680 1.5878119283864102E-11 0.21402612025433271 3.1E-8, 7.0E-10

However, if j is big, the integration spends more time as
the step size is small. For the case μ = μ1, the mild values
j/k = 15/1,20/1 are chosen as examples. The smaller val-
ues are tested, and j = 9 is the smallest value that can be
used for the continuation.

In Xu and Fu (2009) the existence of the Hill-type nearly
circular periodic orbits in the Uranus–Sun ERTBP is dis-
cussed. It is difficult to use the periodic ratio between the
orbit of a main satellite and the orbit of Uranus as the small
parameter k/j , as j/k may be bigger than 2000 in the real
case. For the case μ = μ2, periodic orbits are found within
the accuracy 10−6 when j/k = 100. A numerical experi-
ment confirms that there exist such periodic orbits, and their

stability depends on the initial values and the related param-
eters. The numerical results are listed in Table 3. The graph-
ics of such periodic orbits are like the one shown in Fig. 7
with j/k = 15/1.

Consider the elliptic Hill lunar problem. The Hamiltonian
is

HEHill = 1

2
‖y‖2 − 1

‖x‖ − ‖x‖2

‖d(t)‖3 P2(cos θ). (16)

The approximate initial values can be set as
(
(k/j)

2
3 ,0,0,0,

0, (j/k)
1
3

)
if ε3 = k/j . In Table 4, a few sets of initial val-
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Table 3 Continuation results for the Hill-type symmetric periodic orbits with ep = 0.05,μ1 = 0.99905,μ2 = 4.36E-5

μ,
j
k
, q1,p3, cosEp q1 p2 p3 Accuracy

μ1,9/1,−,−,+ 0.23104753163817912 8.0620636981595163E-6 2.0794376956090326 7.6E-6

μ1,10/1,+,+,− 0.21537709084179013 -4.7390796697328394E-5 2.15374689229495662 3.0E-7

μ1,15/1,+,+,+ 0.16436341432551488 5.0036877441153105E-6 2.4654262085761807 1.3E-7

μ1,15/1,+,−,+ 0.16436367968929597 3.9499901833411442E-6 -2.4654222443177933 2.3E-6

μ1,15/1,−,−,+ -0.16436286895570323 -1.8913624401571552E-7 -2.4654287841629947 1.3E-7

μ1,15/1,+,−,− 0.16436338845142534 3.9503115156928243E-6 -2.4654265954695549 1.4E-7

μ1,15/1,−,+,− -0.16436246794895698 8.4392190553698161E-6 2.4654347991509216 1.3E-7

μ1,20/1,+,+,+ 0.13567857291598950 1.8266566226512722E-6 2.7135520510913653 3.2E-8

μ1,20/1,+,−,+ 0.13567810115684364 -2.8338983017714020E-6 -2.7135614861419906 3.2E-8

μ1,20/1,−,−,+ -0.13567823018764408 1.5202401461046449E-7 -2.7135566894273957 3.2E-8

μ1,20/1,+,+,− 0.13567682577006848 -1.4976898593297709E-6 2.7135836228834762 3.2E-8

μ1,20/1,−,+,− -0.13567845037069237 1.1084871724569170E-5 2.7135526140754811 3.2E-8

μ2,100/1,+,+,+ 1.6336500706172479E-3 1.2935495288346786E-13 0.16338441652396937 -2.3E-7

μ2,100/1,+,−,+ 1.6324114759488188E-3 7.2954138446461076E-4 -0.16350664803264217 -4.0E-7

μ2,100/1,−,+,+ -1.6335856889559293E-3 -1.3774201523538131E-4 0.16339072873300489 2.6E-7

μ2,100/1,−,−,+ -1.6332904221876856E-3 -1.4261424806548357E-4 -0.16342024401880687 2.6E-7

μ2,100/1,+,−,− 1.6337533424654455E-3 -7.8121392249276981E-7 -0.16337033074651763 -2.1E-7

μ2,100/1,−,+,− -1.6337180193249647E-3 -2.5687716281726035E-4 0.16337370558143691 -1.6E-6

Table 4 Continuation results for the Hill-type symmetric periodic orbits with ep = 0.05

j/k, q1,p3,Ep q1 p2 p3 Accuracy

9/1,+,±,+ 0.23027985156386710 -0.11923921522343746 ±2.1030048386591433 6.5E-11

9/1,−,+,+ -0.23027985159772291 0.11923922447889911 2.1030048378295447 2.9E-10

10/1,+,±,+ 0.21441595110081965 -0.12263152645883330 ±2.1817641137275761 2.0E-10

10/1,−,−,+ -0.22971398774971366 0.13034344853460289 -2.1131087306366378 2.1E-9

100/1,+,+,+ 4.6413955052640225E-2 -2.7355878060220995E-2 4.6421463857660310 5.0E-8

100/1,+,−,+ 4.6413955429244334E-2 -2.7355870865517117E-2 -4.6421463481544718 4.0E-8

100/1,−,+,+ -4.6413955751133197E-2 2.7345266290028071E-2 4.6421463784576762 2.7E-8

100/1,−,−,+ -4.6413955682293610E-2 2.7344271595776716E-2 -4.6421463911971408 2.3E-8

ues of the spacial nearly circular periodic orbits of the ellip-
tic Hill lunar problem are shown, where the period ratios are
k/j = 1/9,1/10,1/100, and ep = 0.05 is fixed. It is inter-
esting to consider the central primary to be oblate, and the
equator plane coincides with the reference plane. Denote the
radius of the equator of the central planet as ae < ‖x‖. The

perturbation term about the oblateness is −J2
a2
e

‖x‖3 P2(
x3‖x‖ ),

where J2 is the coefficient of the oblateness. The related re-
search will be done in the future.

4 Conclusion

This paper mainly considers the numerical computation of
the nearly circular periodic orbits with inclinations near 90◦
in the ERTBP. Both comet and Hill-type periodic orbits are

calculated. Some propositions about the existence and lin-
ear stability of such symmetric orbits are introduced to be
self-consistent. The linear stability of these periodic orbits
is estimated by the index ρ, which is the sum of the moduli
of the characteristic multipliers. When μ = 0.5, twenty val-
ues of j/k are used to investigate the families of the comet-
type doubly symmetric periodic orbits. The sets of initial
values of these periodic orbits and the values of ρ are listed
in Table 1 with ep = 0.05. The graphics of two orbits are in
Fig. 1 and Fig. 2. The diagram of ρ and ep for some fam-
ilies can be referred to in Fig. 3. Some planar symmetric
periodic orbits of μ = 0.5 are also numerically studied in
Fig. 4. When μ = 0.99905 and ep = 0.05, 32 sets of initial
values of the comet-type symmetric periodic orbits are sup-
plied in Table 2. When k/j increases, such periodic orbits
become closer to the u1u3-plane, see Fig. 5. If k is small,
periodic orbits cannot be continued with a good precision.
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Fig. 7 The Hill-type symmetric periodic orbit with μ = 0.00095 is
nearly circular and of high inclination. The initial values are from case
“(15/1,+ + +)” in Table 3. The data is within one period 2π

The mass ratio can also be served as one parameter, as one
example in Fig. 6, the family “(1/8,+,−,+)” is continued
along μ ∈ [0,0.5] with ep fixed as 0.05 and 0.0489 sepa-
rately. It is obvious that ep and μ are crucial for the stability
of the periodic orbits. Hill-type orbits are different from the
comet-type ones. The j in the period ratio j/k cannot be too
small to continue successfully, see Table 3. When calculat-
ing the Hill-type orbits with the mass of the central primary
μ small, it is better to use the Hill lunar model. Some peri-
odic orbits are calculated, and the initial values are given in
Table 4.

Unlike the analysis and proofs, the numerical exploration
concerns the accuracy of the initial values with great detail.
It is interesting to use the Lindstedt-Poincaré method to give
the approximate solutions of such periodic orbits and com-
pare the approximate analytical solutions with the numerical
results. It also makes sense to use the ep and μ as small pa-
rameters to analytically study the linear stability of these or-
bits. It is still a puzzle to study the orbits of the planets. It is
possible to continue the periodic orbits of the ERTBP to the
full three-body problem and explain the existence of high-
inclination orbits in the exoplanetary systems. The stability
of these periodic orbits with a real astronomy background is
very interesting for future research.
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